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NUMERICAL SOLUTION OF FREE BOUNDARY PROBLEM
FOR UNSTEADY SLAG FLOW IN THE HEARTH

Makoto Natori' and Hideo Kawurada.*
1. INTRODUCTION

We present a numerical method for solving a problem in unsteady flow of
molten slag in the hearth region of iron producing blast furnaces during the
tapping operation [1}. This problem is reduced to a free boundary problems
for an elliptic system. This type of problem is similar to the porous flow of
underground water in which the water surface is a free boundary. The
numerical calculations of this type of problem were done by various
researchers (2 - 5]. The three-dimensional problem of the slag flow in the
hearth was solved by using the finite element method by Ichihara and Fukutake
[6]. They concluded that their computation scheme is not efficient in
practical use.

The object of this paper is to resolve this computational instability by

using the penalty method developed by Kawarada and Natori [7 - 10].

2. FORMULATION

We considér two-dimensional slag flow in the hearth which is bounded by
impermeable boundaries y =0, x =0 and x = a. One of vertical boundaries,
x = 0, has a tapping hole near the bottom. As shown in Figure 1, y = glx,t)

denotes the free surface of the slag region Qg:
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Rq = {(x,y) | 0 ¢ x<a, 0 <y<glx,t)} .

Free boundary

Yy = g(x,t)
] ng
Tapping hole
<
0 a X
K
Figure 1 ‘

A velocity potential can be defined by
R
= & 4
¢ Yty
where p 1s the fluid pressure and Y is the specific weight of the fluid.

If it is assumed that Darcy's law holds, the potential is given by

1 Aé¢=0 in Q

1) ¢ n g

(2) ¢ =y on y = gix,t)

3 = =

(3) ¢Y on y
(4) ox =0 on x=0 and x = a, except on the tapping hole :
(5) ¢x =k ( >0 ) on the tapping hole {

where k 1is a constant.
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The motion of the free surface is given by
) 9% - (¢xgx - ’y)'y-g(x,t)'

The initial shape of the free surface, y = g(x,0), is given and forms an
initial condition for equation (6).

When we try to solve the problem formulated above, we must get a
numerical solution of the potential problem (1) - (S5) for a given free
boundary y = g(x,t). Wwhen this is done, the derivatives of the potential
function can be calculated on the free boundary, and then the subsequent shape
of the free boundary is obtained by solving the equation (6).

If we use the method of the integrated penalty to solve the potential
problem, then the derivatives of the potential function on the free boundary

are easily approximated [10, 11). This is the reason for our application of

the penalty method to the free boundary problems.

3. PENALTY METHOD
3.1. Penalized problem
We define the characteristic function xe(x,y,t) such as

1 in Q-Q €
€ g
(7 X (x,y,t) =

0 in Qge
where the domains ﬂge and  Q, which includes Qge, are defined by
ae - {Ix,y) 1 0 < x<a, 0<y< g-ix,t)}
and

Q={(x,y) | 0<x<a, 0<y< b}

€
as shown in Pigure 2. Here y = g (x,t) is the approximate free boundary

defined later.




Y 4 Q
b
y = g% (x,t)
nge
; 0 a i
) Figure 2

By the use of xe, equation (1) is approximated by '
€ 1 € € .
(8) b¢ - x4 -y)=0 in 8 ,
where € is a positive constant. We add a new boundary condition:

(9) =y on y=b ,

to the boundary conditions (3) = (5).

In fact, if we let € be suffciently small then we know that ’e

e e B e e

€
approximates ¢ in Qge and ¢ is nearly equal to y in n-nqe (12].

Therefore the boundary condition (2) is approximately satisfied.

If we use the method of integrated penalty, equation (6) is approximated

by

(10) g = -1 - g— : x$ (4% - yray)

This equation is obtained as follows. We put




€ € 1
P =P (xy) = xe(¢° -y ,
qe = qe(x.y) = f; pe(x,n)dn .

By an application of Theorems 1.1 and 1.2 in [11], we have

[T 23
1+%§1nWm),

1 2 '
1+ g (1 =x) in DD ,

¢,
p ’3n|Y'9(xot)

€, 2%
T * 3n|y'9(x.t)

as € + 0 and

€ € - _ ] 2
q (x,g9 (x,t)) = 3n|y‘g(x,t) 1+ 9

where n is outward normal to Qg and

- in &
¢ -y in g

v =
0 ln Q-“ .
9

Then we have

*-1-414'92-3!

(¢ x 3n‘y-g(x,t)

xIx ~ ’y)‘y-g(x,t)
~ -1+ q%(x,g°(x,8))

1 ¢b € & _
=1+l x (e y)ay .

Substituting this approximation into (6) we have (10). Now, the second term

in the right hand side of (10) is called the integrated penalty.

3.2, Discretization of the penalized problem

The penalized problem (8) with the boundary conditions (3) = (5) and (9)
is discretized by the finite difference method. Also the free boundary
equation (10) is solved by Euler's method. The intervals 0 ¢ x ¢ a and

0 <y <Db are divided into N and M equal subintervals of width h. The

mesh size of time is denoted by At. We use the following notations in the

discrete system:




xi = jh, 0 £ i <N
jh, 0 < J<M
t, = kit, 0 <k

¢1,j,k = OS(xi.yj.tk)

€
gj"k g9 (xi,tk)

€
xl’j'k x (xile 'tk) .

We define the discrete characteristic function by
4

1 j> lgi'k/hl

1-9

4 i,k

where [ ] denotes the Gauss symbol and

/h - /h) .

Pix T %,k l9; x o]

If we apply five points formula for the laplacian, we have the following

equations the potential function ¢ satisfies for any k,

1,9,k
:
h2
A e XL, 9,0~ a-1,3,k 7 fie, 9,k

2
-¢ -h—yx
i,3-1,kx i,3+1,x € J %i,3.x
(0 § i s N, O : 3 £ M) .

L (12) -0

e

This system of linear equations is solved by the incomplete Cholesky

decomposition combined with conjugate gradient method [13].

f , The free boundary 9 ,x is obtained by

(13) +Atr(91k) (0 i<W, 0<Kk) ,
’

% ,x+1 9 ,x

(14) Plg, ) = =1+ b
’

e Jo X Ty

-6-




are determined by 9y,x°

It should be noted that x1 3.k and ¢
rle

1'j'k

3.3. How to choose the penalty parameter ¢€

We agsume € is expressed by

(15) e=n’ (o> 0)

and try to find an optimal value of ¢ to minimize the difference of the
right sides of equations (6) and (14). For this purpose, we consider a simple

test problem:

( Au = 0 in ]

g9
u= 1~y on x=0
(16) ﬁ
ua = 1-x on y=20
ua=0 on y =1-x .
\

This problem has an exact solution:
u=1-x-y

in ﬂg (see Figure 3).




Therefore,

(17) AN g

x 3n'y-g(x) 2.

where g{(x) = 1-x.

Here we construct the discretized problem (P:) of the penalized
equation (Pe):
(18) Aue - % xue =0 in Q

where

by varying the value of ¢ in (15). We find that the optimal value of 0 is

3~4 for /8 ¢h ¢ 1/16.

3.4. Stability condition
Here we study the stability condition of (13). It is well known {14}
that the stability condition is

(19) 1.3 1 t-u

3g<2

- [4

ar,
where
1¢b ¢ €
Flg) = -1 + = [ x"tg) ($°(g) - ylay .
If we use the property:
145 (x,g0x, )11 < co/E .

where C, is a constant independent of € [15], then we have

IFtg) - P(g)| ¢ — lg-gl .
/e

If we substitut co//E " to |9F/9g] in (19), then we have




AR

Therefore we may choose

(20) st = cfe =cp®? .
4. NUMERICAL EXAMPLE
In this section we present results for the problem (1) - (6), obtained by

the method of integrated penalty. Data of the problem are as follows:

a=1
. b = 0,3125
x = 0.625 .

The tapping hole is located at (0, 1/16). The initial surface is given by
g(x,0) = 0.25 .
The parameters used for the numerical calculations are

h = 1/16

€ = h' = 1/4096
At = Ve = 1/64 .

In Figure 4 we show the results.

0.31
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